
核一廠 111 年 放射性物質排放年報

中華民國 112 年 8 月 4 日

摘 要

台電公司依據核子反應器設施管制法第十條、核子反應器設施管制法施行細則第七條及游離輻射防護法施行細則第三條規定,核子反應器設施經營者應定期檢送放性廢氣及廢水之排放資料,送主管機關審查。

核一廠111年兩部機進入除役階段,放射性氣體及液體排放造成廠外 民眾之劑量均遠低於設計限值,分述如下:

核一廠本年主煙囪與兩部機廠房煙囪因進入除役階段均無惰性氣體排放,故其關鍵群體有效劑量為零,一號機及二號機放射性碘、氚及微粒等廢氣排放造成關鍵群體器官等價劑量則分別為1.74E-02微西弗及5.72E-02微西弗。一、二號機放射性廢水排放造成關鍵群體有效劑量分別為1.79E-01微西弗及1.08E-01微西弗,關鍵群體器官等價劑量則分別為1.25E+00微西弗及7.47E-01微西弗。

核一廠111年度放射性物質排放與設計限值比如下:單位 微西弗/年

劑量	關鎖	群體有效劑	量	關鍵群體器官等價劑量			
排放別	劑量 a	法 規 設計限值 b	佔限值 a/b	劑量 c	法 規 設計限值 d	佔限值 c/d	
廢氣(I)	01	50	0	1.74E-02 ¹	150	1.16E-04	
廢氣(II)	01	50	0	5.72E-02 ¹	150	3.81E-04	
廢水(I)	1.79E-01	30	5.97E-03	1.25E+00	100	1.25E-02	
廢水(II)	1.08E-01	30	3.60E-03	7.47E-01	100	7.47E-03	

註 I:一號機 II:二號機

原能會 112 年 8 月 22 日會輻字第 1120012113 號函備查

 $^{^1}$ 本公司依據行政院原子能委員會 79 年 1 月 8 日會輻字第 0183 號函發布之「核能電廠環境輻射劑量設計規範」,以及美國核管會(NRC)法規指引 R.G.1.109 劑量評估模式,核能電廠放射性廢氣外釋之有效劑量評估值主要考量惰性氣體造成之貢獻、器官等價劑量評估值主要考量碘、氚、微粒氣體造成之貢獻。由於核一廠進入除役階段後已無惰性氣體排放,故有效劑量之評估結果為零;111 年氣體排放核種僅有氚,故兩部機之器官等價劑量之評估結果分別為 1.74E-02 微西弗、5.72E-02 微西弗。

ABSTRACT

According to the Article 10 of 「Nuclear Reactor Facilities Regulation Act」, the Article 7 of 「Enforcement Rules for the Implementation of Nuclear Reactor Facilities Regulation Act」, and the Article 3 of 「Enforcement Rules for the Ionizing Radiation Protection Act」, Taiwan Power Company should regularly summit the radioactive gaseous and liquid effluents reports to the competent authority for review.

For this year, two units are in decommissioning and all calculated doses at site boundary in 2022 are significantly lower than the designed limits, they are listed as following: two units are in decommissioning and due to no noble gases released in gaseous effluents, the doses of critical group from each unit are zero. The equivalent doses of critical group due to iodine, particulate and tritium which released in gaseous effluents from unit 1 and unit 2 are $1.74E-02~\mu Sv$ and $5.72E-02~\mu Sv$. In addition, the effective dose of critical group due to liquid effluents released from unit 1 and unit 2 are $1.79E-01~\mu Sv$ and $1.08E-01\mu Sv$, the equivalent dose due to liquid effluents released from unit 1 and unit 2 are $1.25E+00\mu Sv$ and $7.47E-01\mu Sv$.

Dose	Effe	ective Dose (μΩ	Sv)	Equivalent Dose (μSv)			
	Dose	Designed Limits	Ratio	Dose	Designed Limits	Ratio	
Item	a	b	a/b	c	d	c/d	
Gaseous (I)	0^1	50	0	1.74E-02¹	150	1.16E-04	
Gaseous (II)	0^1	50	0	5.72E-02 ¹	150	3.81E-04	
Liquid (I)	1.79E-01	30	5.97E-03	1.25E+00	100	1.25E-02	
Liquid(II)	1.08E-01	30	3.60E-03	7.47E-01	100	7.47E-03	

I: unit 1 II: unit 2

¹ According to the "核能電廠環境輻射劑量設計規範" issued by the ROCAEC in January 1990 and the dose assessment model specified in the U.S. NRC regulatory guide R.G.1.109, the evaluation of the effective dose for the release of radioactive gases from NPP considers contributions from noble gases. Additionally, organ equivalent doses consider contributions from iodine, tritium, and particulates. Since noble gases are not released after the decommissioning, the result for effective dose is zero. Moreover, the organ equivalent dose from unit 1 and unit 2 are $1.74\text{E-}02~\mu\text{Sv}$ and $5.72\text{E-}02~\mu\text{Sv}$ this year, calculated based on contributions from tritium.

目 錄

	主 題	頁 次
1.0 \	前言	1
2.0、	放射性物質排放源	4
3.0、	放射性物質排放監測	6
4.0、	放射性物質排放量監測結果	8
5.0、	劑量評估	9
6.0、	環境輻射監測結果檢討	13
7.0、	特殊狀況統計	13
8.0、	合理抑低(ALARA)措施	13
9.0、	結論	15
	附圖	16
	附表	25
	附錄一、111年氣象資料摘要	50
	附錄二、民眾劑量評估使用量因子	53
	表 1 核一廠廢氣排放途徑民眾劑量評估使用量因子	54
	表 2 核一廠廢水排放途徑民眾劑量評估使用量因子	55

圖 次

圖號	名 稱	頁次
圖 1	放射性廢氣、廢水排放源位置圖	16
圖 2	放射性廢氣、廢水排放監測位置圖	17
圖 3	歷年放射性廢氣排放活度趨勢圖	18
圖 4	歷年放射性廢水排放活度趨勢圖	18
圖 5	111 年一號機放射性廢氣排放活度統計圖	19
圖 6	111 年二號機放射性廢氣排放活度統計圖	19
圖 7	111 年主煙囪放射性廢氣排放活度統計圖	20
圖 8	111 年各廢氣排放源總排放活度統計圖	21
圖 9	111 年各廢氣排放源總排放濃度統計圖	21
圖 10	111 年一號機放射性廢水排放活度統計圖	22
圖 11	111 年二號機放射性廢水排放活度統計圖	22
圖 12	111 年各廢水排放源總排放活度統計圖	23
圖 13	111 年各廢水排放源總排放濃度統計圖	23
圖 14	歷年放射性廢氣排放造成關鍵群體有效劑量趨勢圖	24
圖 15	歷年放射性廢水排放造成關鍵群體有效劑量趨勢	24

表次

表號	名稱	頁次
表 1	一號機機組停機狀況摘要	25
表 2	二號機機組停機狀況摘要	25
表 3	放射性廢氣排放監測儀器功能表	26
表 4	放射性廢水排放監測儀器功能表	27
表 5	歷年放射性廢氣排放統計表	28
表 6	歷年放射性廢水排放統計表	30
表 6.1	近 10 年總排放水量(單位:立方米)	30
表 7	111年一號機放射性廢氣排放月統計表	32
表 8	111 年二號機放射性廢氣排放月統計表	33
表 9	111 年主煙囪放射性廢氣排放月統計表	34
表 10	111 年放射性廢氣各排放口年統計表	35
表 11	111 年放射性廢氣排放年統計表	36
表 12	111年一號機放射性廢水排放月統計表	37
表 13	111 年二號機放射性廢水排放月統計表	38
表 14	111 年放射性廢水各排放口年統計表	39
表 15	111 年放射性廢水排放年統計表	40
表 16	111 年放射性廢氣排放造成關鍵群體有效劑量	41
表 17	111 年放射性廢氣排放造成關鍵群體器官等價劑量	42
表 18	111 年放射性廢氣排放造成廠外民眾集體劑量	43
表 19	111 年放射性廢水排放造成關鍵群體劑量	44
表 20	111 年放射性廢水排放造成廠外民眾集體劑量	45
表 21	歷年放射性廢氣排放造成關鍵群體有效劑量	46
表 22	歷年放射性廢水排放造成關鍵群體有效劑量	48

1.0 前言

核一廠在設計階段即以「合理抑低排放」為原則,設計放射性廢氣、廢水處理系統,有效降低放射性物質排放量。在除役階段則依行政院原子能委員會訂定之相關法規及該廠排放管制作業程序書,嚴格執行放射性廢氣、廢水排放管制,使機組除役對廠外之輻射影響減至最低程度,以達成兼顧「安全除役」和「環境保護」之目的。

核一廠一號機及二號機之停止運轉日期分別為107年12月5日及108年7月15日,故本公司依據「核子反應器設施管制法」第23條及「核子反應器設施除役許可申請審核辦法」第2條、第3條之規定,提出本公司核一廠除役計畫,並於108年7月12日獲原能會會核字第1080007869號函核發除役許可,且於108年7月16日除役許可生效。

為確保核一廠排放至環境之廢氣及廢水的放射性核種濃度符合游離輻射防護安全標準,核一廠參考美國 NRC 公布之相關法規指引,如 R.G.1.109、NUREG-1302,訂定「廠外輻射劑量計算手冊(ODCM)」及「放射性氣液體排放管制計畫(RECP)」,對於排放之廢氣及廢水均予以取樣、分析、記錄與統計,並於各排放口設置具有警報功能之流程輻射監測器,以確實掌握放射性廢氣、廢水的實際排放濃度。另依廢氣及廢水排放實績,利用計算模式進行關鍵群體輻射劑量評估,以證明放射性廢氣、廢水排放造成之廠外民眾輻射劑量符合法規規定。

1.1 法規要求

有關放射性廢氣、廢水排放管制之主要相關法規如下:

- 1.1.1 核子反應器設施管制法
- 1.1.2 游離輻射防護法
- 1.1.3 放射性物料管理法

- 1.1.4 核子反應器設施管制法施行細則
- 1.1.5 游離輻射防護法施行細則
- 1.1.6 放射性物料管理法施行細則
- 1.1.7 游離輻射防護安全標準
- 1.1.8 核能電廠環境輻射劑量設計規範
- 1.1.9 核能電廠放射性物質排放管理規範

依據行政院原子能委員會於民國 79 年 1 月 8 日會輻字 第 0183 號函發布之核能電廠環境輻射劑量設計規範, 核能電廠運轉產生之放射性物質外釋,造成廠外民眾 劑量須符合下列規定:

(1) 放射性廢氣排放

【惰性氣體】

惰性氣體造成廠界任一民眾有效劑量不超過50 微西弗/年/機組,空氣中加馬輻射劑量值不超過100 微戈雷/年/機組,且貝他輻射劑量值不超過200 微戈雷/年/機組。

【碘、氚及微粒】

碘、氚及微粒(半化期超過 8 天者)造成廠界任一民眾器官等價劑量不超過 150 微西弗/年/機組。

(2) 放射性廢水排放

放射性廢水排放造成任一民眾有效劑量不超過 30 微西弗/年/機組,任一民眾器官等價劑量不超過 100 微西弗/年/機組。

(3) 季劑量限制

任一日曆季劑量的限制,為 1.及 2.兩節所述 年劑量限值的一半。

1.2 機組狀況:

綜合 111 年核一廠兩部機組狀況說明如下:

1.2.1 111 年內兩部機組皆進入除役過渡階段前期。

1.2.2 全年工作人員集體有效劑量共計為 375.87 人毫西弗。

2.0 放射性物質排放源

2.1 放射性廢氣排放源

核一廠放射性廢氣的來源包括除役過程中產生的廢氣及廠房通風系統的排氣兩大部分,除役過程中產生的廢氣包含備用氣體處理系統(SBGT)排氣,經活性碳床吸附、滯留及高效率過濾器處理後,經由主煙囪排放至大氣。而廢房通風排氣部分包括反應器廠房、汽機廠房、廢料廠房、廢氣廠房、洗衣廠房、一號貯存庫及熱處理廠房,其中反應器廠房、汽機廠房、廠門存庫及熱處理廠房,其中反應器廠房、汽機廠房、廠門存庫及熱處理廠房,其中反應器廠房、汽機廠房、一號貯存庫、無處理廠房、一號貯存庫、二號貯存庫、熱處理廠房則經由各自獨立之廠房通風系統排放口排放,而各排放口均設有獨立的連續監測及警報功能之流程輻射監測器。

本年度並無新增之放射性廢氣排放源,全廠共設有 8 個 放射性廢氣排放口,如下所示:

- 2.1.1 一號機廠房煙囪排放口
- 2.1.2 二號機廠房煙囪排放口 以上兩處排放口分別位於兩部機汽機廠房頂樓 處。
- 2.1.3 主煙囪排放口 位於核一廠廠房東方之山丘上,山高 100 公尺, 煙囪高度 140 公尺,排放口高度約為 240 公尺。
- 2.1.4 廢氣廠房通風排放口
- 2.1.5 洗衣廠房通風排放口
- 2.1.6 一號貯存庫通風排放口
- 2.1.7 二號貯存庫通風排放口
- 2.1.8 熱處理廠房通風排放口

2.2 放射性廢水排放源

核一廠兩部機及洗衣廠房各設有獨立之廢水處理系統處理除役過程產生之廢水,放射性廢水之來源有設備洩水、地面洩水、雜項廢水、洗滌廢水及化學廢水等。兩部機、洗衣廠房、一號貯存庫及二號貯存庫各設有外釋排放口,廢水排放在流程輻射監測器監測下將廢水引入廠區浴洗及雜項廢水處理系統處理後,再引入循環海水渠道排放到大海。本年度並無新增之放射性廢水排放源,全廠共設有6個放射性廢水排放口,如下所示:

- 2.2.1 一號機廢水排放口
- 2.2.2 二號機廢水排放口
- 2.2.3 洗衣廠房廢水排放口
- 2.2.4 一號貯存庫廢水排放口
- 2.2.5 二號貯存庫廢水排放口(包含熱處理廠房排放之廢水)
- 2.2.6 廢海水排放口(一、二號機共用)

2.3 廠房位置

核一廠放射性物質排放源共設有 14 個廢氣、廢水排放口,其餘各廠房佈置及全廠廠區關係位置如圖 1 所示。

3.0 放射性物質排放監測

3.1 放射性廢氣和廢水排放監測儀器性能分析

核一廠放射性廢氣排放口均裝置有流程輻射監測器執行 線上連續監測,若達到警報值時,則依據程序書規定採 取對應管制行動。另外廢氣排放口亦設有取樣器,分別 對分裂及活化氣體、碘、微粒及氚定期進行取樣、分析 與記錄並統計排放量。

核一廠各放射性廢水排放口亦均裝置有流程輻射監測器執行線上連續監測,若達到警報設定值時,則監測儀器自動驅動電動隔離閥關閉排放通路,停止排放。放射性廢水排放係以批次排放方式執行管制作業,每批次排放前均須取樣品分析再依分析結果估算該批次排放量,並計算與循環海水混合後之放射性濃度,確認符合游離輻射防護安全標準之排放物濃度規定後,於流程輻射監測器監控下排放。

上述各放射性廢氣和廢水排放監測儀器性能詳如表 3 及表 4 所示。

3.2 放射性廢氣排放監測

核一廠各放射性廢氣排放 監測器位置如下:

- 3.2.1 一號機廠房煙囪排放口監測器
- 3.2.2 二號機廠房煙囪排放口監測器
- 3.2.3 主煙囪排放口監測器
- 3.2.4 廢氣廠房通風排放口監測器
- 3.2.5 洗衣廠房通風排放口監測器
- 3.2.6 一號貯存庫通風排放監測器
- 3.2.7 二號貯存庫通風排放監測器
- 3.2.8 熱處理廠房通風排放監測器

3.3 放射性廢水排放監測

核一廠各放射性廢水排放監測器位置如下:

- 3.3.1 一號機廢水排放口監測器
- 3.3.2 二號機廢水排放口監測器
- 3.3.3 洗衣廠房廢水排放口監測器
- 3.3.4 一號貯存庫廢水排放口監測器
- 3.3.5 二號貯存庫廢水排放口監測器
- 3.3.6 廢海水排放口監測器 (一、二號機共用)
- 以上各放射性廢氣、廢水排放監測器位置如圖 2 所示。

4.0 放射性物質排放量監測結果

核能電廠廢氣排放口設有取樣器,定期執行取樣、分析與記錄,並依核種分析濃度、排氣流率、排放時間及適當修正因數,統計估算廢氣排放活度,再利用模式計算,進行關鍵群體輻射劑量評估,證明放射性廢氣排放造成之廠外民眾輻射劑量符合法規規定。

廢水排放係採批次排放管制,於每批次排放前取樣分析,並依核種分析濃度、各批次排放水量,統計估算廢水排放活度。另為考量廢水排放管制之即時性,批次排放前之核種分析與統計,係以分析方法較為簡單快速之加馬核種管制為主;而 H-3、Sr-89/90 等純貝他核種因分析方法較為費時,則以每月或每季各批次廢水取樣之混和樣品進行分析,並配合廢液體積估算其排放活度²,再與其他加馬核種之排放活度一併利用模式計算,進行關鍵群體輻射劑量評估,證明放射性廢水排放造成之廠外民眾輻射劑量符合法規規定。

分析實驗室定期評估儀器分析之最小可測量(MDA),並核驗分析能力是否符合可接受最小可測量(AMDA)之要求;前述AMDA 係參考美國核管會(NRC)公布 NUREG-1302 訂定。

4.1 歷年放射性廢氣排放活度統計

由核一廠歷年放射性廢氣排放活度趨勢,因核一廠 已進入除役階段,反應器停止運轉已無核分裂反應, 分裂及活化產物活度已隨時間逐漸衰減,且大致上呈現 平穩的排放趨勢,歷年放射性廢氣排放活度統計及趨勢 如表 5、圖 3 所示。

-8- 第一核能發電廠 111 年放射性物質排放報告 原能會 112 年 8 月 22 日會輻字第 1120012113 號函備查

 $^{^2}$ 参考美國 NRC RG1.21 (Rev. 3)第 1.7 節所載 "For batch releases, measurements should be performed to identify principal radionuclides before a release. If an analysis of specific "hard-to-detect" radionuclides (such as strontium-89/90, nickel-63 and iron-55 in liquid releases) cannot be done before the batch release (see NUREG-1301 and NUREG-1302), the licensee should have collected representative samples for the purpose of subsequent composite analysis.",有關廢水批次排放,針對分析方法較為費時之核種(如:Sr-89/90、Fe-55)的分析,設施經營者可留取具有代表性的樣品,進行後續混和樣品之分析;本公司現行廢水批次排放管制做法,符合前述管制方式。

4.2 歷年放射性廢水排放活度統計

依核一廠歷年放射性廢水排放活度趨勢,除役階段因 反應器停止運轉已無核分裂反應,分裂及活化產物活度 逐漸衰減,且大致上亦呈現平穩趨勢,歷年放射性廢水 排放活度統計及趨勢如表 6、圖 4 所示。

4.3 111 年放射性廢氣排放活度統計

本年度放射性廢氣排放監測結果均在正常變動範圍內, 並無異常排放情形。

本年放射性廢氣排放活度統計詳如表 7、表 8、表 9、表 10、表 11 及圖 5、圖 6、圖 7 所示。

廢氣排放源總活度及總濃度之統計圖詳如圖8、圖9。

4.4 111 年放射性廢水排放活度統計

本年度放射性廢水排放監測結果均在正常變動範圍內, 並無異常排放情形。

本年放射性廢水排放活度統計詳如表 12、表 13、表 14、表 15 及圖 10、圖 11 所示。

廢水排放源總活度及總濃度之統計圖詳如圖 12、圖 13。

4.5 全年度檢修時段與排放量之比較

核一廠 1、2 號機 111 年分別於 1/4-5/27 及 5/31-9/23 進行除役過渡階段前期維護測試週期(MSC),該段期間之廢氣、廢水之排放量與非 MSC 時期無顯著差異。

5.0 劑量評估

5.1 111 年放射性廢氣、廢水排放造成之關鍵群體劑量評估 主要係依據行政院原子能委員會於民國 79 年 1 月 8 日 會輻字第 0183 號函發布之核能電廠環境輻射劑量設計 規範要求,分別對放射性廢氣及廢水排放途徑影響的 關鍵群體進行輻射劑量評估。

- 5.2 放射性廢氣排放途徑影響之群體
 - 5.2.1 依核一廠全年氣象資料(如附錄一),利用美國核管會認可之大氣擴散程式(XOQDOQ-82)計算放射性廢氣排放後經由大氣擴散至環境中的空氣及地面沈積濃度分佈。
 - 5.2.2 依 107 年獲核備之台灣南北部居民生活環境與飲食習慣調查報告,N、NNE、NE、ENE、E及NNW等方位為座落於海域無居民居住之方位,並依據原能會107年1月30日會輻字第1070001381號函,自107年度起保守考量將十六方位皆納入評估。因當地並無生產鮮奶之牧場,故剔除攝食奶類之曝露途徑,選擇直接曝露、地表輻射、呼吸、農作物及肉類食用等符合當地居民生活習慣之關鍵曝露途徑進行輻射劑量評估。
 - 5.2.3 以調查結果第 97.5 百分位值為關鍵群體之使用量因子,而以調查結果的平均值為評估集體劑量之使用量因子。另亦考量當地農牧產物產銷情形對上述使用量因子予以適當修正,如附錄二中表 1 所示。
 - 5.2.4 依本年放射性廢氣排放實績,利用本公司委託核能研究所發展之廢氣排放劑量評估程式(GASWIN)計算各方位空氣及地面沈積濃度最大位置之各年齡群所接受各關鍵曝露途徑的劑量貢獻總和,並取其數值最大者為假設性關鍵群體之年輻射劑量。
 - 5.2.5 依評估結果,核一廠 111 年無惰性氣體排放,

一、二號機造成之有效劑量均為零³,而一、二號機放射性碘、氚及微粒等廢氣排放影響之假設性關鍵群體則落於北方廠界附近,造成之器官等價劑量分別為 1.74E-02 微西弗、5.72E-02 微西弗,若排除無人口居住之方位,最大器官等價劑量分別 為 6.42E-03 微 西 弗 (西 南 方) 、 2.11E-02 微西弗(西南方),均遠低於「核能電廠環境輻射劑量設計規範」之法規設計限值,詳如表 16、表 17。

5.2.6 111 年一號機、二號機放射性廢氣排放造成半徑 50 公里範圍內之民眾集體有效劑量分別為 1.18E-04 人西弗、3.87E-04 人西弗,民眾集體器官等價劑量亦分別為 1.18E-04 人西弗、 3.87E-04 人西弗,詳如表 18 所示。

5.3 放射性廢水排放途徑影響之群體

- 5.3.1 由於核一廠放射性廢水係排放至大海,與農田灌溉與飲水水源無關,且依 107 年獲核備之台灣南北部居民生活環境與飲食習慣調查報告,核一廠出水口附近的石門海水浴場已停止開放,且金山活動中心亦僅有少數玩帆船的民眾,故剔除農田灌溉、飲水及划船等曝露途徑,選擇魚類、無脊椎類、海藻之攝食與沙灘遊憩及游泳之直接曝露等符合當地居民生活飲食習慣之關鍵曝露途徑進行輻射劑量評估。
- 5.3.2 以調查結果中第 97.5 百分位值為關鍵群體之使用量因子,而以調查結果的平均值為評估集體劑量之使用量因子。另亦考量當地漁獲產銷情形對上述使用量因子予以適當修正,如附錄二中表 2

-11- 第一核能發電廠 111 年放射性物質排放報告 原能會 112 年 8 月 22 日會輻字第 1120012113 號函備查

³ 本公司依據行政院原子能委員會於民國 79 年 1 月 8 日會輻字第 0183 號函發布之「核能電廠環境輻射劑量設計規範」,有關核能電廠放射性廢氣之外釋法規設計限值,有效劑量評估值主要考量惰性氣體造成之貢獻。此外,本公司廠外民眾劑量估算方法係參考美國核管會(NRC)法規指引 R.G.1.109 劑量評估模式,並利用行政院原子能委員會核能研究所發展之放射性廢氣排放民眾劑量評估程式 GASWIN 進行劑量評估,該模式對於有效劑量之評估僅考量惰性氣體的貢獻。由於目前核一廠進入除役階段後已無惰性氣體排放,故依前述設計規範及劑量評估模式進行民眾劑量評估時,有效劑量之評估結果將為零。

- 5.2.3 依本年放射性廢水排放實績,利用本公司委託 核能研究所發展之廢水排放劑量評估程式 LQWIN,保守計算出水口位置各年龄群接受各 可能關鍵曝露途徑的劑量貢獻總和,並取其數值 最大者為假設性關鍵群體之年輻射劑量。
- 5.2.4 依評估結果,核一廠 111 年放射性廢水排放途徑之假設性關鍵群體位於出水口附近,一、二號機放射性廢水造成之關鍵群體有效劑量分別為1.79E-01 微西弗、1.08E-01 微西弗,而器官等價劑量分別為1.25E+00 微西弗、7.47E-01 微西弗,均遠低於「核能電廠環境輻射劑量設計規範」之法規設計限值,詳如表 19。
- 5.2.5 另 111 年一號機、二號機放射性廢水排放造成之民眾集體有效劑量分別為 5.62E-03 人西弗、3.39E-03 人西弗,而民眾集體器官等價劑量分別為 4.17E-02 人西弗、2.49E-02 人西弗,詳如表 20。
- 5.4 歷年核一廠放射性廢氣、廢水排放造成之關鍵群體劑量如表 21、表 22 及圖 14、15 所示,均遠低於法規設計限值。

6.0 環境輻射監測結果檢討

本公司放射試驗室執行 111 年度廠外環境輻射監測各項環境輻射監測,取樣及分析結果均遠低於「環境試樣放射性分析預警措施基準」之調查基準,並無異常情形。依據原能會所頒佈「環境輻射監測規範」之「體外及體內劑量評估方法」,本年度除役期間造成廠外民眾之劑量評估結果未達評估標準(小於1.00E-03 毫西弗),遠低於核能電廠環境輻射劑量設計規範之限值(5.00E-01 毫西弗/年·廠址),故無輻射安全顧慮。

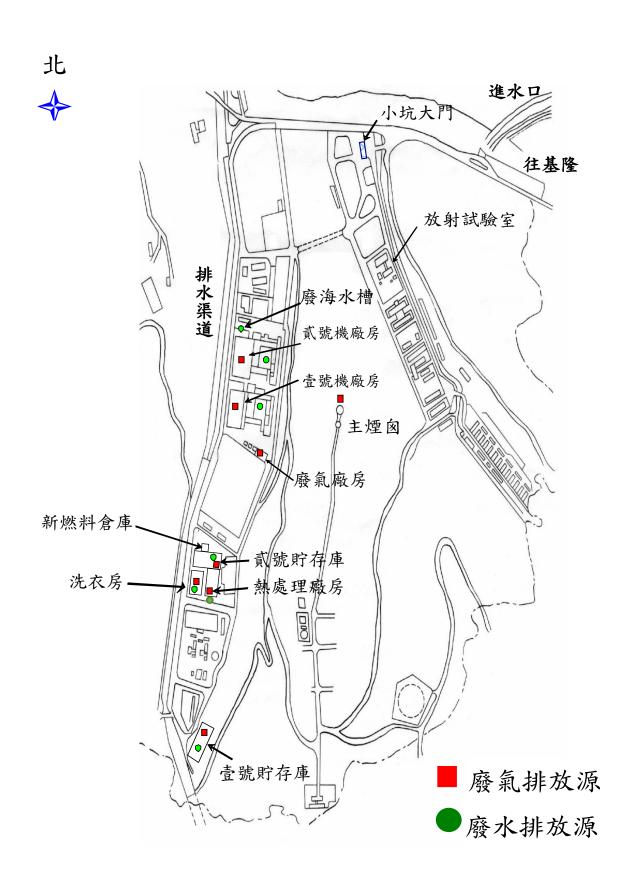
- 7.0 特殊狀況統計: 無
- 8.0 合理抑低(ALARA)措施

核一廠對於放射性物質排放量抑低所採取之 ALARA 措施計有:

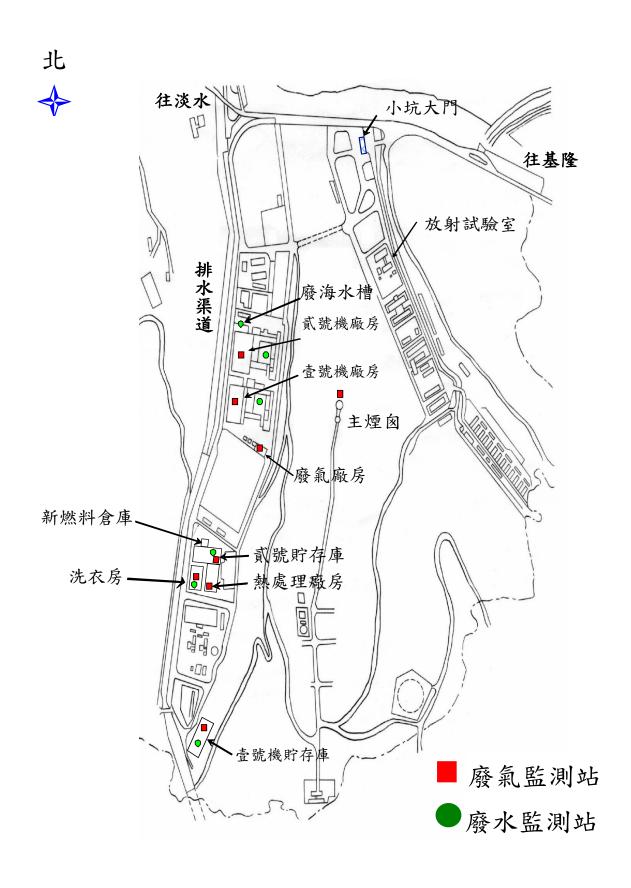
8.1 放射性廢氣管制措施:

採除污與圍阻方式,降低現場工作過程中所可能造成之 放射性微粒揚散及空氣比活度之增高,藉以減少廢氣 活度之外釋量。具體作為包括:

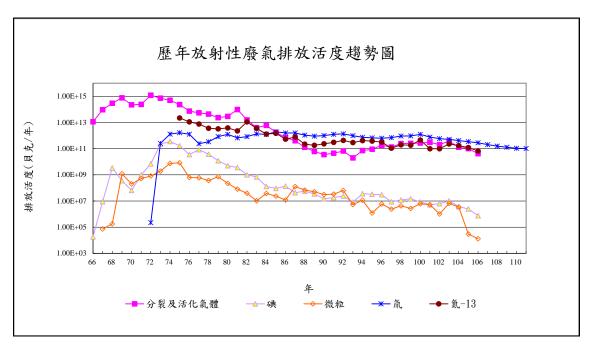
- 8.1.1 儘可能降低待切割及研磨物件之表面污染程度, 進而減少可能導致之污染情況。
- 8.1.2 事先潤濕或噴灑待處理之物件,以濕式方式施行 研磨與切割作業。
- 8.1.3 高輻射、高污染物件利用水中切割,以抑低人員 輻射劑量並防止空氣中放射性濃度上升。
- 8.1.4 搭設帳棚並裝設高效率過濾裝置,且視需要將 排風口導入預先盛水之容器內,以加強去除廢氣 中之放射性活度。
- 8.1.5 在吊移大型高污染器具設備前,視需要暫時停止 運轉現場通風空調系統。


- 8.2 放射性廢水管制措施:
 - 8.2.1 防止機組廢水處理系統、管路及儲存槽之淤泥 積存,並於適當條件下進行逆洗或清槽處理, 以降低廢水活度,減少放射性物質外釋。
 - 8.2.2 降低除污廢水之放射性活度。除污間之除污廢水 在排入機組廢水處理系統前,先行過濾處理以 降低廢水處理系統之作業壓力及時間,減少廢水 活度,降低放射性物質外釋。
 - 8.2.3 減少廢水產量。管制區內之地面及設備表面除污作業,均採用少量清水潤濕及擦乾方式處理。同時,作業前預先封閉鄰近區域之地面洩水孔防止除污殘水洩入。現場除污作業所蒐集之廢水均送往除污間,先行過濾處理後再排入廢水處理系統。
 - 8.2.4 提升洗衣房設備之洗滌除污及廢水處理系統之處理及排放效能。機組大修前完成洗衣設備及相關系統之維護保養,並於大修前、後施行廢水儲存槽之清槽作業,以發揮洗衣設備之除污功能及廢水處理效能,降低洗衣廢水活度,減少放射性物質外釋。

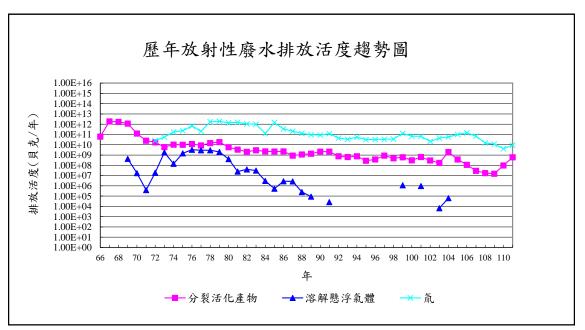
9.0 結論


核一廠 111 年放射性物質排放之各項監測結果均在正常變動範圍內,並無異常排放情形,顯示本年度放射性廢水和廢氣排放濃度均符合「游離輻射防護安全標準」之嚴格規範,且排放對關鍵群體造成之劑量經評估亦遠低於「核能電廠環境輻射劑量設計規範」之法規設計限值。

由本公司放射試驗室全年環境輻射監測結果可知,環境直接輻射、空氣樣、落塵樣、水樣、農漁牧產物、沈積物等各試樣計測、分析結果均遠低於行政院原能會訂定的「環境試樣放射性分析預警措施基準」之調查基準。


綜合上述,本年度核一廠除役並未對廠外環境及居民造成輻射上任何不良影響,未來核一廠將仍繼續秉持合理抑低之原則, 嚴格執行放射性物質排放管制,並加強廠區及環境輻射監測, 使機組除役對廠外輻射影響減至最低之程度。

- 16 - 第一核能發電廠 111 年放射性物質排放報告 原能會 112 年 8 月 22 日會輻字第 1120012113 號函備查



- 17 - 第一核能發電廠 111 年放射性物質排放報告 原能會 112 年 8 月 22 日會輻字第 1120012113 號函備查

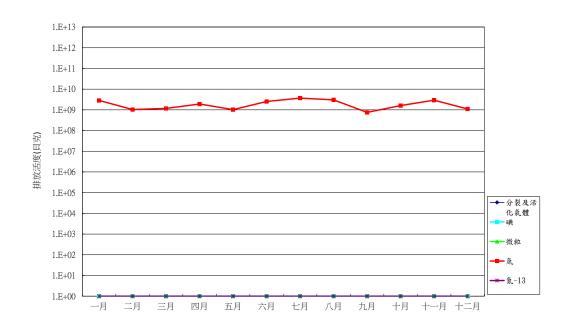
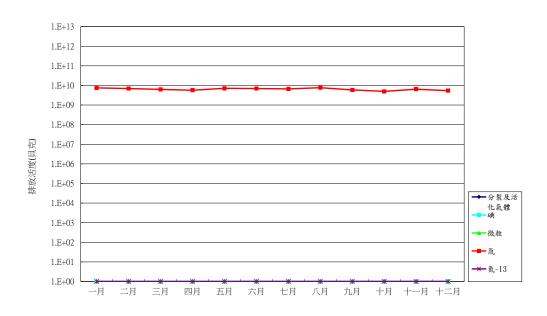

註:111 年度「分裂及活化氣體」、「碘」、「微粒」、「氮-13」活度小於 MDA。

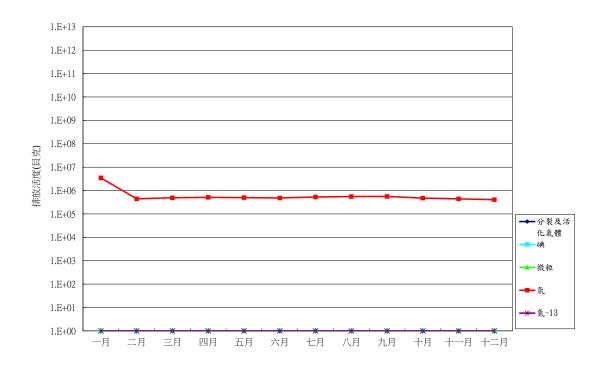
圖 4 歷年放射性廢水排放活度趨勢圖

註:111 年度「溶解懸浮氣體」活度小於 MDA。


圖 5 111 年一號機放射性廢氣排放活度統計圖

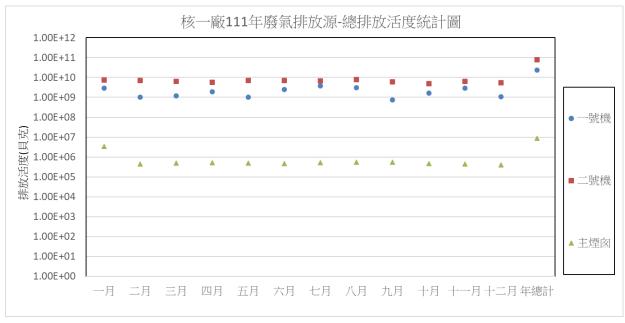
註1:本年除放射性氣體氚外,其他放射性廢氣排放量皆小於 MDA。

註 2:一號機於 107 年 12 月進入除役過渡階段前期,111 年於 1/4-5/27 進行除役過渡階段前期維護測試週期(MSC)。


圖 6 111 年二號機放射性廢氣排放活度統計圖

註1:本年除放射性氣體氚外,其他放射性廢氣排放量皆小於 MDA。

註 2: 二號機於 108 年 7 月進入除役過渡階段前期,111 年於 5/31-9/23 進行除役過渡階段前期維護測試週期(MSC)。


圖 7 111 年主煙囪放射性廢氣排放活度統計圖

註 1: 本年除放射性氣體氚外,其他放射性廢氣排放量皆小於 MDA。

註 2: 一、二號機分別於於 107 年 12 月、108 年 7 月進入除役過渡階段前期,111 年一、二號機分別於 1/4-5/27 及 5/31-9/23 進行除役過渡階段前期維護測試週期(MSC)。

圖 8 111 年各廢氣排放源總排放活度統計圖

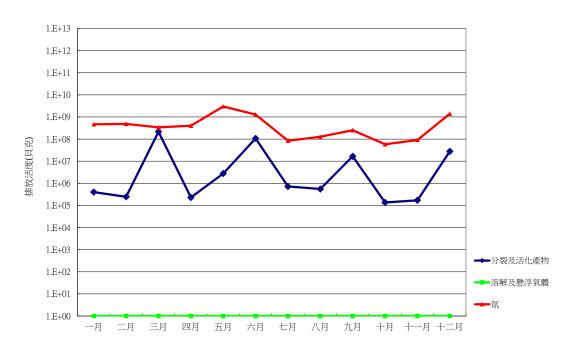
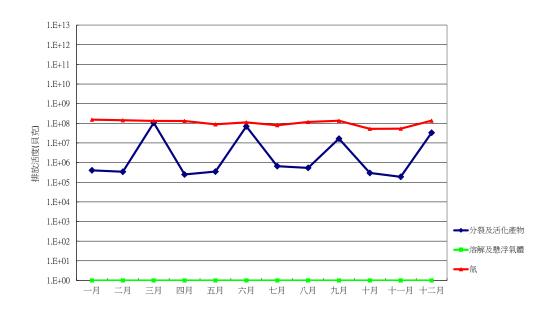

註: 一、二號機分別於 107 年 12 月、108 年 7 月進入除役過渡階段前期,111 年一、二號機分別於 1/4-5/27 及 5/31-9/23 進行除役過渡階段前期維護測試週期(MSC)。

圖 9 111 年各廢氣排放源總排放濃度統計圖

註: 一、二號機分別於 107 年 12 月、108 年 7 月進入除役過渡階段前期,111 年一、二號機分別於 1/4-5/27 及 5/31-9/23 進行除役過渡階段前期維護測試週期(MSC)。


圖 10 111 年一號機放射性廢水排放活度統計圖

註 1: 本年度一號機放射性廢液溶解及懸浮氣體排放量小於 MDA。

註 2: 一號機於 108 年 7 月進入除役過渡階段前期,111 年於 5/31-9/23 進行除役過渡階段前期維護 測試週期(MSC)。

圖 11 111 年二號機放射性廢水排放活度統計圖

註1:本年度二號機放射性廢液溶解及懸浮氣體排放量小於 MDA。

註 2:二號機於 108 年 7 月進入除役過渡階段前期,111 年於 5/31-9/23 進行除役過渡階段前期維護測試週期(MSC)。

圖 12 111 年各廢水排放源總排放活度統計圖

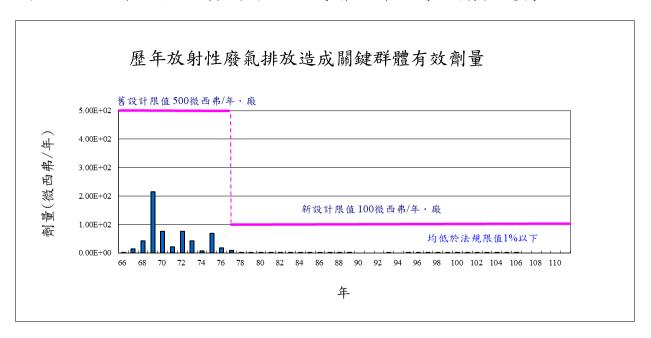
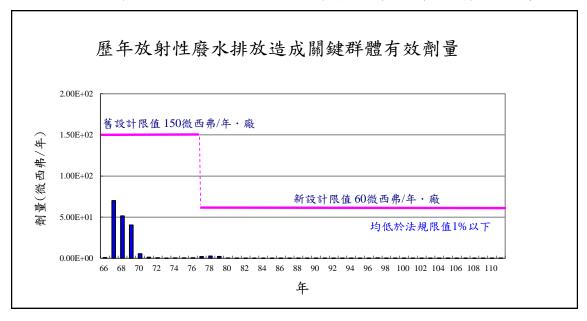

註: 一、二號機分別於 107 年 12 月、108 年 7 月進入除役過渡階段前期,111 年一、二號機分別於 1/4-5/27 及 5/31-9/23 進行除役過渡階段前期維護測試週期(MSC)。

圖 13 111 年各廢水排放源總排放濃度統計圖



註:一、二號機分別於 107 年 12 月、108 年 7 月進入除役過渡階段前期,111 年一、二號機分別於1/4-5/27 及 5/31-9/23 進行除役過渡階段前期維護測試週期(MSC)。

圖 14 歷年放射性廢氣排放造成關鍵群體有效劑量趨勢

圖 15 歷年放射性廢水排放造成關鍵群體有效劑量趨勢

表 1 一號機機組停機狀況摘要

(民國111年1月1日~111年12月31日)

編		停	機	期 間		
	走	也	ì	20	停 機	摘 要 說 明
號	日期	時間	日期	時間	時 數	
01	0101	0000	1231	2400	NA	進入除役過渡階段前期

表 2 二號機機組停機狀況摘要

(民國111年1月1日~111年12月31日)

編		停	機	期間			
	起		ì	2	停 機	摘 要 說 明	
號	日期	時間	日期	時間	時 數		
01	0101	0000	1231	2400	NA	進入除役過渡階段前期	

表 3 放射性廢氣排放監測儀器功能表

		I		佔油丝圈	安林山东	机宁丛	-
類 別	監測器	儀器型式	取樣 類別	偵測範圍 機組: cps 其他::μCi/cc	容積效率 μCi/cc/cps	設 定 值 機組: cps 其他:μCi/cc	排放流量
	主 煙 囪 監測儀器	加馬閃爍 偵 測 器 碘 化 鈉	顆粒 碘 氚	1.00E-01 1.00E+06	CH A: 1.16E-06 CH B: 1.24E-06	High alarm CH A : 2.2E+04 CH B : 2.2E+04 Alert alarm CH A : 900 CH B : 820	734 CFM 〔毎部機 367 CFM〕
	一 號 機 廠房煙囪 監測儀器	加馬閃爍 偵 測 器 碘 化 鈉	顆粒 碘 氚	1.00E-01 1.00E+06	5.20E-07	High alarm 27(未注氫) Alert alarm 25(未注氫)	323200 CFM
	二 號 機 廠房煙囪 監測儀器	加馬閃爍 偵 測 器 碘 化 鈉	顆粒 碘 氚	1.00E-01 1.00E+06	5.13E-07	High alarm 38(未注氫) Alert alarm 36(未注氫)	323200 CFM
	主 煙 囟 監測儀器 (DCR-707)	貝他磷光體偵測 器	氣體	GAS-LOW: 1.0E-07~1.0uCi/cc; GAS-MIDDLE/HIGH: 1.0E-02~1.0E+05 uCi/cc	Low:5.43E-08 Middle:8.00E-05 High:1.95E-02 μCi/cc/cpm	High alarm 5.15E-2 μCi/cc Alert alarm 1.03E-3 μCi/cc	734 CFM 〔每部機 367 CFM〕
		加馬閃爍 偵 測 器 碘 化 鈉	碘	1.0E-12~1.0E-6 μCi/cc	3.68E-10 μCi/cc/cpm	High alarm 3.42E-9 μCi/cc Alert alarm 3.08E-9 μCi/cc	
	一 號 機 廠房煙囪 監測儀器	貝他磷光體偵測 器	氣體	1.0E-6~1.0E+5 μCi/cc	3.40E-8 μCi/cc/cpm	High alarm 8.75E-6 uCi/cc Alert alarm 7.86E-6µCi/cc	323200 CFM
	(DCR-707)	貝他磷光體偵測 器	顆粒	1.0E-12~1.0E-6 μCi/cc	3.10E-11 μCi/cc/cpm	High alarm 2.77E-10 uCi/cc Alert alarm 2.49E-10 μCi/cc	
		加馬閃爍 偵 測 器 碘 化 鈉	碘	1.0E-12~1.0E-6 μCi/cc	3.68E-10 μCi/cc/cpm	High alarm 3.42E-9 μCi/cc Alert alarm 3.08E-9 μCi/cc	
	二 號 機 廠房煙囪 監測儀器	貝他磷光體偵測 器	氣體	3.0E-7~3.0E-1 μCi/cc	3.40E-8 μCi/cc/cpm	High alarm 8.75E-6 μCi/cc Alert alarm 7.88E-6 μCi/cc	323200 CFM
廢	(DCR-707)	貝他磷光體偵測 器	顆粒	1.0E-12~1.0E-6 μCi/cc	3.10E-11 μCi/cc/cpm	High alarm 2.77E-10 uCi/cc Alert alarm 2.49E-10 µCi/cc	
	洗 衣 房排氣通道 監測儀器	閃 爍 貨 測 器	顆粒 碘 氚	1.00E-12 1.00E-05	3.23E-11 (μCi/cc/cpm)	High alarm 4.75E-10 Alert alarm 4.32E-10 (μCi/cc)	34880 CFM
	廢氣廠房 排氣通道 監測儀器	加馬閃爍 偵 測 器	氣體	1.00E-08 1.00E-02	4.63E-08 μCi/cc/cpm	High alarm 3.17E-3 µCi/cc Alert alarm 3.17E-5 µCi/cc	23000 CFM
氣			顆粒	1.00E-16 1.00E-05	3.23E-11 (μCi • ft³/cc/cpm)	High alarm 7.20E-10 Alert alarm 6.54E-10 (UCi(cc)	
ж у	一 號 貯 存 庫 道路	加馬閃爍 偵 測 器 碘 化 鈉	碘	1.00E-16 1.00E-05	3.67E-10 (μCi · ft³/cc/cpm)	High alarm 2.19E-08 Alert alarm 1.99E-08 (µCi/cc)	7100 CFM
	监测俄奇	监测 俄奇	惰性氣 體	1.00E-14 1.00E-01	5.43E-08 (μCi/cc/cpm)	High alarm 3.32E-06 Alert alarm 3.02E-06 (μCi/cc)	
	二號	加馬閃爍	顆粒	1.00E-11 1.00E-04	3.232E-11 (μCi • ft³/cc/cpm)	High alarm 4.94E-10 Alert alarm 4.49E-10 (µCi/cc)	
	貯 存 庫 排氣通器 監測儀器	值测 测	碘	1.00E-11 1.00E-04	3.673E-10 (μCi • ft³/cc/cpm)	High alarm 2.85E-09 Alert alarm 2.59E-09 (µCi/cc)	6000 CFM
			顆粒	1.00E-11 1.00E-04	3.232E-11 (μCi • ft³/cc/cpm)	High alarm 5.32E-10 Alert alarm 4.83E-10 (μCi/cc)	
	熱 處 理 廠 房 排氣通道	加馬閃爍 鎖 光 納	碘	1.00E-11 1.00E-04	3.673E-10 (μCi • ft³/cc/cpm)	High alarm 4.30E-09 Alert alarm 3.91E-09 (μCi/cc)	24912 CFM
	監測儀器		惰性氣 體	1.00E-07 1.00E-01	5.435E-08 (μCi/cc/cpm)	High alarm 3.08E-06 Alert alarm 2.80E-06 (µCi/cc)	

* 本表為 111 年資料。

表 4 放射性廢水排放監測儀器功能表

*5			压, 1美	偵測範圍	京 体 北 李	設 定 值	
類別	監 測 器	儀器型式	取樣 類別	機組: cps 其他::μCi/cc	容積效率 μCi/cc/cps	機組: cps 其他:μCi/cc	排放流量
	一號機	加馬閃爍		1.00E-01 ↑		循環海水泵 一台:173	MDT WST OGDT 500 LPM
	廢水外釋	偵 測 器	_		4.75E-06	一台 . 1/3	
	監測儀器	碘化鈉		1.00 Ě +06			DDT 100LPM
	二號機	加馬閃爍		1.00E-01		循環海水泵	MDT WST
	廢水外釋	偵 測 器	_		3.71E-06	一台:187	500 LPM
	監測儀器	碘化鈉		1.00E+06			DDT 100LPM
						循環海水泵一台	
廢	洗衣房	加馬閃爍		1.00E-07	7.81E-09	High alarm 7.40E-05	
	廢水外釋	偵 測 器			(μCi/cc/cpm)	Alert alarm	100GPM
	監測儀器	碘化鈉		1.00E-01	(рег/се/срш)	3.70E-05 (μCi/cc)	
						· /	
水	一 號	加馬閃爍		1.00E-12		循環海水泵一台	
	貯 存 庫	偵 測 器		Î	1.35E-09	High alarm 2.80E-05	1000LPM
	廢水外釋	碘化鈉		1.00E-03	(μCi/cc/cpm)	Alert alarm	TOOOLINI
	監測儀器	≥ 10 N1				1.40E-05 (μCi/cc)	
	二號	, m on h.k.		1.00E-07		循環海水泵一台	
	二號貯存庫	加馬閃爍		1	4.688E-07	High alarm 9.25E-05	80GPM
	廢水外釋	偵測器	_	1.00E-01	(μCi/cc/cps)	Alert alarm	80GPM
	監測儀器	碘化鈉				4.63E-05 (μCi/cc)	
	府 治 小			1.00E-8		循環海水泵一台 排放泵一台	
	廢 海 水 集 水 池	加馬閃爍		1.00E-8	1.025E-08	排放泵一台 High alarm 4.94E-05	
	廢水外釋	偵 測 器	_	1,007,00	1.025E-08 (μCi/cc/cpm)		567LPM
	監測儀器	碘化鈉		1.00E-03		Alert alarm 2.47E-05	
						(μCi/cc)	

*本表為111年資料。

表 5 歷年放射性廢氣排放統計表 單位:貝克

年	分裂及活化氣體	碘	微 粒	氚	氮-13
66	1.13E+13	1.85E+04	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
67	9.29E+13	8.88E+06	7.33E+04	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
68	2.97E+14	3.35E+09	1.79E+05	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
69	7.62E+14	3.57E+08	1.21E+09	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
70	2.23E+14	6.55E+07	2.01E+08	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
71	2.41E+14	1.01E+09	5.11E+08	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
72	1.20E+15	6.88E+09	8.25E+08	2.25E+05	<mda< td=""></mda<>
73	7.07E+14	2.22E+11	1.89E+09	2.54E+11	<mda< td=""></mda<>
74	5.00E+14	3.58E+11	7.51E+09	1.28E+12	<mda< td=""></mda<>
75	2.32E+14	1.67E+11	8.21E+09	1.65E+12	2.18E+13
76	7.29E+13	3.54E+10	6.29E+08	1.26E+12	1.11E+13
77	5.47E+13	8.36E+10	5.96E+08	2.37E+11	7.49E+12
78	4.34E+13	3.74E+10	3.66E+08	3.34E+11	3.62E+12
79	2.34E+13	1.19E+10	7.10E+08	8.33E+11	3.27E+12
80	2.91E+13	5.00E+09	2.23E+08	1.23E+12	3.83E+12
81	9.69E+13	3.66E+09	8.03E+07	6.62E+11	2.27E+12
82	1.55E+13	9.92E+08	3.89E+07	8.21E+11	1.10E+13
83	3.96E+12	6.92E+08	1.05E+07	1.34E+12	3.54E+12
84	6.00E+12	1.29E+08	3.77E+07	1.25E+12	1.29E+12
85	1.79E+12	9.04E+07	2.35E+07	1.93E+12	1.48E+12
86	6.86E+11	1.37E+08	1.20E+07	1.59E+12	5.28E+11
87	4.04E+11	4.36E+07	1.25E+08	1.56E+12	7.58E+11
88	1.27E+11	5.65E+07	6.87E+07	1.08E+12	2.18E+11
89	6.05E+10	3.48E+07	5.13E+07	8.94E+11	1.78E+11
90	3.51E+10	1.50E+07	3.09E+07	9.98E+11	2.35E+11
91	4.47E+10	1.83E+07	3.36E+07	1.23E+12	3.03E+11
92	6.54E+10	2.40E+07	6.35E+07	1.35E+12	4.25E+11
93	1.97E+10	2.81E+07	5.35E+06	9.72E+11	2.92E+11
94	7.10E+10	3.60E+07	1.14E+07	7.41E+11	4.10E+11
95	9.06E+10	3.26E+07	1.20E+06	6.59E+11	3.81E+11
96	1.78E+11	3.00E+07	5.90E+06	6.30E+11	3.15E+11
97	1.33E+11	8.70E+06	2.39E+06	6.96E+11	1.08E+11
98	2.43E+11	1.20E+07	4.26E+06	9.07E+11	1.93E+11
99	2.54E+11	1.46E+07	2.68E+06	9.40E+11	1.82E+11
100	2.70E+11	8.54E+06	6.19E+06	1.24E+12	4.54E+11
101	3.04E+11	5.21E+06	5.21E+06	7.62E+11	9.82E+10
102	2.01E+11	6.28E+06	1.04E+06	5.81E+11	9.78E+10

年	分裂及活化氣體	碘	微 粒	氚	氮-13
103	3.75E+11	1.02E+07	6.51E+06	5.16E+11	2.28E+11
104	1.28E+11	3.70E+06	3.49E+06	4.11E+11	1.68E+11
105	9.98E+10	2.47E+06	2.96E+04	3.45E+11	1.19E+11
106	4.11E+10	7.60E+05	1.32E+04	2.79E+11	6.71E+10
107	<mda< td=""><td><mda< td=""><td><mda< td=""><td>2.03E+11</td><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>2.03E+11</td><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td>2.03E+11</td><td><mda< td=""></mda<></td></mda<>	2.03E+11	<mda< td=""></mda<>
108	<mda< td=""><td><mda< td=""><td><mda< td=""><td>1.56E+11</td><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>1.56E+11</td><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td>1.56E+11</td><td><mda< td=""></mda<></td></mda<>	1.56E+11	<mda< td=""></mda<>
109	<mda< td=""><td><mda< td=""><td><mda< td=""><td>1.26E+11</td><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>1.26E+11</td><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td>1.26E+11</td><td><mda< td=""></mda<></td></mda<>	1.26E+11	<mda< td=""></mda<>
110	<mda< td=""><td><mda< td=""><td><mda< td=""><td>1.06E+11</td><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>1.06E+11</td><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td>1.06E+11</td><td><mda< td=""></mda<></td></mda<>	1.06E+11	<mda< td=""></mda<>
111	<mda< td=""><td><mda< td=""><td><mda< td=""><td>1.01E+11</td><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>1.01E+11</td><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td>1.01E+11</td><td><mda< td=""></mda<></td></mda<>	1.01E+11	<mda< td=""></mda<>

註:一、二號機分別於於107年12月、108年7月進入除役過渡階段前期。

年	分裂及活化產物	溶解及懸浮氣體	氚
66	6.20E+10	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
67	1.88E+12	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
68	1.69E+12	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
69	1.17E+12	4.27E+08	<mda< td=""></mda<>
70	1.25E+11	1.74E+07	<mda< td=""></mda<>
71	2.52E+10	3.86E+05	<mda< td=""></mda<>
72	1.75E+10	1.88E+07	2.50E+10
73	5.97E+09	1.80E+09	5.60E+10
74	1.02E+10	1.41E+08	1.75E+11
75	1.01E+10	1.47E+09	2.33E+11
76	1.20E+10	3.30E+09	6.75E+11
77	8.79E+09	2.95E+09	2.05E+11
78	1.47E+10	2.90E+09	1.73E+12
79	1.83E+10	2.02E+09	1.89E+12
80	5.75E+09	4.12E+08	1.39E+12
81	3.38E+09	2.46E+07	1.53E+12
82	2.10E+09	4.01E+07	1.09E+12
83	2.91E+09	3.10E+07	9.76E+11
84	2.29E+09	3.09E+06	1.27E+11
85	2.19E+09	5.35E+05	1.48E+12
86	2.25E+09	2.79E+06	3.50E+11
87	8.71E+08	2.72E+06	2.06E+11
88	1.13E+09	2.50E+05	1.28E+11
89	1.36E+09	8.96E+04	9.40E+10
90	2.13E+09	<mda< td=""><td>8.91E+10</td></mda<>	8.91E+10
91	2.15E+09	2.64E+04	1.20E+11
92	7.71E+08	<mda< td=""><td>4.22E+10</td></mda<>	4.22E+10
93	6.36E+08	<mda< td=""><td>3.47E+10</td></mda<>	3.47E+10
94	7.64E+08	<mda< td=""><td>5.46E+10</td></mda<>	5.46E+10
95	2.82E+08	<mda< td=""><td>3.17E+10</td></mda<>	3.17E+10
96	3.78E+08	<mda< td=""><td>3.23E+10</td></mda<>	3.23E+10
97	8.83E+08	<mda< td=""><td>3.44E+10</td></mda<>	3.44E+10
98	4.90E+08	<mda< td=""><td>3.65E+10</td></mda<>	3.65E+10
99	6.11E+08	1.17E+06	1.27E+11
100	3.02E+08	<mda< td=""><td>6.81E+10</td></mda<>	6.81E+10
101	6.38E+08	9.72E+05	6.67E+10
102	2.94E+08	<mda< td=""><td>2.11E+10</td></mda<>	2.11E+10

年	分裂及活化產物	溶解及懸浮氣體	氚
103	1.73E+08	6.74E+03	4.48E+10
104	1.97E+09	6.37E+04	5.76E+10
105	3.79E+08	<mda< td=""><td>9.97E+10</td></mda<>	9.97E+10
106	1.12E+08	<mda< td=""><td>1.49E+11</td></mda<>	1.49E+11
107	2.90E+07	<mda< td=""><td>6.88E+10</td></mda<>	6.88E+10
108	1.77E+07	<mda< td=""><td>1.52E+10</td></mda<>	1.52E+10
109	1.50E+07	<mda< td=""><td>1.15E+10</td></mda<>	1.15E+10
110	9.70E+07	<mda< td=""><td>4.08E+09</td></mda<>	4.08E+09
111	6.00E+08	<mda< td=""><td>9.31E+09</td></mda<>	9.31E+09

註:一、二號機分別於107年12月、108年7月進入除役過渡階段前期。

表 6.1 近 10 年總排放水量(單位:立方米)

年	總排放水
102	1.86E+04
103	1.84E+04
104	1.64E+04
105	1.68E+04
106	1.18E+04
107	1.22E+04
108	9.66E+03
109	1.17E+04
110	7.62E+03
111	9.92E+03

111 年一號機放射性廢氣排放月統計表

單位: 貝克

核種	一月	二月	三月	四月	五月	六月	七月	八月	九月	十月	十一月	十二月	合 計
一、分裂及活化	 七氣體												
Ar-41													
Kr-85m													
Kr-88													
Xe-131m													
Xe-133													
Xe-133m													
Xe-135													
Xe-135m													
Xe-138													
總 計													
二、碘													
I-131													
I-133													
I-135													
總 計													
三、微粒													
Ag-110m													
Ba-La-140													
Co-60													
Cs-134													
CS-137													
Mn-54													
Sr-89													
Sr-90													
總計													
四、氚													
H-3	2.84E+09	1.03E+09	1.17E+09	1.91E+09	1.02E+09	2.53E+09	3.70E+09	3.05E+09	7.52E+08	1.61E+09	2.92E+09	1.10E+09	2.36E+10
五、氮-13													
N-13													
11, 10			l .				l .					l	

註:1.----- 表: <MDA。

2.Sr-89、Sr-90 為季分析核種。

111 年二號機放射性廢氣排放月統計表

單位:貝克

核種	一月	二月	三月	四月	五月	六月	七月	八月	九月	十月	十一月	十二月	合 計
一、分裂及活化	上氣體	. /1	— / ,	/ •	—/ ,	/ 1 / 1	- / 1	/ - /	73/1	1 / 1	1 /1		
Ar-41													
Kr-85m													
Kr-87													
Kr-88													
Xe-131m													
Xe-133													
Xe-133m													
Xe-135													
Xe-135m													
Xe-138													
二、碘													
I-131													
I-133													
I-135													
總計													
三、微粒	1	1	,	1	1		1	1	,	,		r	
Ag-110m													
Ba-La-140													
Co-60													
Cs-134													
CS-137													
Mn-54													
Sr-89													
Sr-90													
總計													
四、氚	I	T											
H-3	7.50E+09	6.96E+09	6.31E+09	5.70E+09	7.16E+09	6.98E+09	6.70E+09	7.68E+09	5.91E+09	4.98E+09	6.43E+09	5.42E+09	7.77E+10
五、氮-13													
N-13													
	h												

註:1.----- 表: <MDA。

2.Sr-89、Sr-90 為季分析核種。

111 年主煙囪放射性廢氣排放月統計表

單位: 貝克

核 種	一月	二月	三月	四月	五月	六月	七月	八月	九月	十月	十一月	十二月	合計
一、分裂及活化	氣體												
Ar-41													
Kr-85m													
Kr-87													
Kr-88													
Xe-131m													
Xe-133													
Xe-133m													
Xe-135													
Xe-135m													
Xe-138													
總計													
二、碘													
I-131													
I-133													
I-135													
總計													
三、微粒													
Ag-110m													
Ba-La-140													
Co-60													
Cs-134													
Cs-137													
Mn-54													
Sr-89													
Sr-90													
總計													
四、氚							l					T	
H-3	3.46E+06	4.45E+05	4.92E+05	5.12E+05	4.99E+05	4.83E+05	5.30E+05	5.55E+05	5.60E+05	4.77E+05	4.43E+05	4.08E+05	8.86E+06
五、氮-13					T		ı				ı	T	Т
N-13													

註:1.----- 表: <MDA。

2.Sr-89、Sr-90 為季分析核種。

表 10 111 年放射性廢氣各排放口年統計表

Ar-41	一號機 豊排放量 <mda <mda <mda< th=""><th><mda< th=""><th>廢 氣 廠 房 <mda< th=""><th>洗衣 廠房</th><th>一 號 貯存庫</th><th>二號貯存庫</th><th>熱處理廠 房</th></mda<></th></mda<></th></mda<></mda </mda 	<mda< th=""><th>廢 氣 廠 房 <mda< th=""><th>洗衣 廠房</th><th>一 號 貯存庫</th><th>二號貯存庫</th><th>熱處理廠 房</th></mda<></th></mda<>	廢 氣 廠 房 <mda< th=""><th>洗衣 廠房</th><th>一 號 貯存庫</th><th>二號貯存庫</th><th>熱處理廠 房</th></mda<>	洗衣 廠房	一 號 貯存庫	二號貯存庫	熱處理廠 房									
Ar-41	<mda <mda="" <mda<="" td=""><td><mda< td=""><td><mda< td=""><td></td><td></td><td></td><td>,,</td></mda<></td></mda<></td></mda>	<mda< td=""><td><mda< td=""><td></td><td></td><td></td><td>,,</td></mda<></td></mda<>	<mda< td=""><td></td><td></td><td></td><td>,,</td></mda<>				,,									
Kr-85m	<mda< td=""><td><mda< td=""><td></td><td>< MDA</td><td colspan="12">一、分裂及活化氣體排放量(Bq)</td></mda<></td></mda<>	<mda< td=""><td></td><td>< MDA</td><td colspan="12">一、分裂及活化氣體排放量(Bq)</td></mda<>		< MDA	一、分裂及活化氣體排放量(Bq)											
Kr-87 <mda <mda="" <mda<="" i-131="" i-133="" kr-88="" td="" xe-131m="" xe-133="" xe-135=""><td><mda< td=""><td></td><td></td><td>\111D/1</td><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda>	<mda< td=""><td></td><td></td><td>\111D/1</td><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>			\111D/1	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Kr-88		3 /D 1	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Xe-131m < MDA Xe-133 < MDA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Xe-133 < MDA		<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Xe-133m < MDA Xe-135 < MDA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Xe-135 < MDA Xe-135m < MDA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Xe-135m < MDA Xe-138 < MDA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Xe-138	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
二、碘 I-131 < MDA I-133 < MDA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
I-131	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
I-133 <mda< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mda<>																
	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
I-135 < MDA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
三、微粒																
Ag-110m < MDA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Ba-La-14 < MDA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Co-60 <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Cs-134 <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Cs-137 <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Mn-54 <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Sr-89 <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
Sr-90 <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
四、氚																
H-3 8.86E+06	2.36E+10	7.77E+10	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>									
五、氮-13																
N-13 <mda< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mda<>																

表 11 111 年放射性廢氣排放年統計表

排放點	主煙囪	一號機	二號機
一、分裂及活化氣	記 體	排放量	t (Bq)
Ar-41	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Kr-85m	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Kr-87	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Kr-88	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Xe-131m	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Xe-133	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Xe-133m	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Xe-135	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Xe-135m	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Xe-138	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
二、碘			
I-131	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
I-133	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
I-135	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
三、微粒			
Ag-110m	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Ba-La-140	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Co-60	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Cs-134	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Cs-137	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Mn-54	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Sr-89	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
Sr-90	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
四、氚			
H-3	8.86E+06	2.36E+10	7.77E+10
五、氮-13			
N - 13	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>

表 12

111 年一號機放射性廢水排放月統計表

單位:貝克

核種	一月	二月	三月	四月	五月	六月	七月	八月	九月	十月	十一月	十二月	合 計
一、分裂及	活化產物												
Ag-110m													
Co-58													
Co-60	2.68E+05	2.17E+05	3.61E+05	2.23E+05	2.56E+06	7.88E+05	5.67E+05	3.71E+05	6.05E+05	7.81E+04	1.27E+05	1.10E+05	6.27E+06
Cr-51													
Cs-134													
Cs-137	1.33E+05	3.05E+04	5.76E+04	7.01E+03	2.14E+05	2.83E+05	1.52E+05	1.84E+05	5.58E+04	5.80E+04	4.49E+04	1.41E+05	1.36E+06
Fe-55(季)			2.15E+08			1.06E+08			1.61E+07			2.76E+07	3.65E+08
I-132													
I-133													
I-134													
Mn-54													
Mn-56													
Nb-97													
Sb-124													
Sr-89(季)													
Sr-90(季)													
總計	4.01E+05	2.47E+05	2.15E+08	2.30E+05	2.77E+06	1.07E+08	7.20E+05	5.55E+05	1.67E+07	1.36E+05	1.71E+05	2.78E+07	3.72E+08
						二、溶解及	及懸浮氣體						
Xe-135													
						三 :	、氚						
H-3	4.67E+08	4.86E+08	3.40E+08	4.01E+08	2.99E+09	1.29E+09	8.42E+07	1.28E+08	2.51E+08	5.81E+07	9.08E+07	1.40E+09	7.98E+09
						四	` α						
α													

註:1.----- 表: <MDA。

2.Fe-55、Sr-89、Sr-90 為季分析核種。

3.一號機排放量包含(洗衣廠房、一號及二號貯存庫、廢海水收集槽)各排放口之一半排放量。

111 年二號機放射性廢水排放月統計表

單位:貝克

核 種	一月	二月	三月	四月	五月	六月	七月	八月	九月	十月	十一月	十二月	合 計
Ag-110m													
Co-58													
Co-60	3.10E+05	3.42E+05	3.97E+05	2.49E+05	3.12E+05	6.89E+05	5.31E+05	4.11E+05	4.97E+05	2.21E+05	1.52E+05	1.57E+06	5.68E+06
Cr-51													
Cs-134												2.77E+05	2.77E+05
Cs-137	9.33E+04				3.69E+04	1.43E+05	1.25E+05	1.27E+05	1.85E+04	7.59E+04	3.74E+04	3.67E+06	4.32E+06
Fe-55(季)			1.06E+08			6.88E+07			1.61E+07			2.76E+07	2.18E+08
I-132													
I-133													
I-134													
Mn-54													
Mn-56													
Nb-95													
Nb-97													
Sb-124													
Sr-89(季)													
Sr-90(季)													
總計	4.03E+05	3.42E+05	1.06E+08	2.49E+05	3.49E+05	6.97E+07	6.56E+05	5.38E+05	1.66E+07	2.97E+05	1.89E+05	3.31E+07	2.28E+08
二、溶解及	懸浮氣體	T				T	T	T		T	T	T	_
Xe-135													
三、氚	1	1				T	T	T		T	T	ı	_
H-3	1.53E+08	1.43E+08	1.32E+08	1.31E+08	8.84E+07	1.12E+08	7.98E+07	1.17E+08	1.35E+08	5.24E+07	5.33E+07	1.36E+08	1.33E+09
四、α	T											T	
α													

註:1.----- 表: <MDA。

2.Fe-55、Sr-89、Sr-90 為季分析核種。

3.二號機排放量包含(洗衣廠房、一號及二號貯存庫、廢海水收集槽)各排放口之一半排放量。

表 14 111 年放射性廢水各排放口年統計表

衣 14 111 牛放剂 狂險小谷排放口牛統訂衣									
排放口	一號機	二號機	洗衣廠房	一 號 貯存庫	二 號 貯存庫	廢海水 收集槽			
一、分裂及	活化產物排	L 放量(Bq)		<u> </u>	以177年	1人 未 佰			
Ag-110m	< MDA	<mda< td=""><td><mda< td=""><td><mda< td=""><td>< MDA</td><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>< MDA</td><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td>< MDA</td><td><mda< td=""></mda<></td></mda<>	< MDA	<mda< td=""></mda<>			
Co-58	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
Co-60	2.94E+06	2.36E+06	6.61E+06	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
Cr-51	< MDA	<mda< td=""><td><mda< td=""><td><mda< td=""><td>< MDA</td><td>< MDA</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>< MDA</td><td>< MDA</td></mda<></td></mda<>	<mda< td=""><td>< MDA</td><td>< MDA</td></mda<>	< MDA	< MDA			
Cs-134	< MDA	2.77E+05	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
Cs-137	6.22E+05	3.58E+06	1.44E+06	<mda< td=""><td>3.70E+04</td><td><mda< td=""></mda<></td></mda<>	3.70E+04	<mda< td=""></mda<>			
F-18	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
Fe-55	2.16E+08	6.91E+07	1.47E+08	6.81E+06	4.02E+06	1.40E+08			
Fe-59	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
I-131	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
I-132	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
I-133	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
I-134	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
Mn-54	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
Mn-56	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
Nb-95	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
Nb-97	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
Sb-124	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
Sr-89	< MDA	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
Sr-90	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>< MDA</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>< MDA</td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td>< MDA</td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td>< MDA</td></mda<></td></mda<>	<mda< td=""><td>< MDA</td></mda<>	< MDA			
二、溶解及懸浮氣體									
Xe-135	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>			
三、氚	<u>,</u>								
H-3	7.01E+09	3.60E+08	2.32E+07	1.95E+07	3.34E+07	1.87E+09			

表 15 111 年放射性廢水排放年統計表

排放點	一號機	二號機					
一、分裂及活化產物	排放量(Bq)						
Ag-110m	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>					
Co-58	< MDA	<mda< td=""></mda<>					
Co-60	6.27E+06	5.68E+06					
Cr-51	< MDA	<mda< td=""></mda<>					
Cs-134	< MDA	2.77E+05					
Cs-137	1.36E+06	4.32E+06					
F-18	< MDA	<mda< td=""></mda<>					
Fe-55	3.65E+08	2.18E+08					
Fe-59	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>					
I-131	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>					
I-132	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>					
I-133	< MDA	<mda< td=""></mda<>					
I-134	< MDA	<mda< td=""></mda<>					
Mn-54	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>					
Mn-56	< MDA	<mda< td=""></mda<>					
Nb-95	< MDA	<mda< td=""></mda<>					
Nb-97	< MDA	<mda< td=""></mda<>					
Sb-124	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>					
Sr-89	< MDA	<mda< td=""></mda<>					
Sr-90	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>					
二、溶解及懸浮氣體							
Xe-135	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>					
三、氚		_					
H-3	7.98E+09	1.33E+09					
四、平均體積排放率	.						
(m^3/\sec)	1.34E+01	1.21E+01					

1.一號機排放量包含(洗衣廠房、一號及二號貯存庫、廢海水收集槽)各排放口之一半排放量。 2.二號機排放量包含(洗衣廠房、一號及二號貯存庫、廢海水收集槽)各排放口之一半排放量。

表 16 111 年放射性廢氣排放造成關鍵群體有效劑量

	惰 性 氣	體
方 位	-	-
機組	一號機	二號機
有效劑量 途徑:空浸 (微西弗)	0.00E+00	0.00E+00
年設計限值 (微西弗)	50	50
與年設計限值比	0.00E+00	0.00E+00
空氣加馬輻射 (微戈雷)	0.00E+00	0.00E+00
年設計限值 (微戈雷)	100	100
與年設計限值比	0.00E+00	0.00E+00
空氣貝他輻射 (微戈雷)	0.00E+00	0.00E+00
年設計限值 (微戈雷)	200	200
與年設計限值比	0.00E+00	0.00E+00

註:本年主煙囪與兩部機廠房煙囪均無惰性氣體排放,故其關鍵群體有效劑量與空氣加馬、空氣貝他輻射劑量均為零。

表 17 111 年放射性廢氣排放造成關鍵群體器官等價劑量

碘、 微粒、 氚						
方 位	N	N				
機組	一號機	二號機				
器官	腎上腺	腎上腺				
關鍵曝露途徑	(微西弗)	(微西弗)				
地面沉積	0.00E+00	0.00E+00				
農作物	9.36E-03	3.08E-02				
肉 類	2.78E-05	9.16E-05				
呼吸	7.99E-03	2.63E-02				
合 計	1.74E-02	5.72E-02				
每年設計限值 (微西弗)	150	150				
與年設計限值比	1.16E-04	3.81E-04				

- 1. 主煙囪排放係一、二號機共用,故每部機造成關鍵群體器官等價劑量係由主煙囪劑量 貢獻之二分之一與個別機組廠房煙囪之劑量貢獻加總。
- 2. 本年僅排放氚核種,依美國 EPA (2002), Federal Guidance Report 13, 氚核種地面沉積之體外劑量係數為 0.0, 故該途徑之輻射劑量評估結果為 0.0。
- 3. 本評估為更求保守性,將十六方位皆納入評估,結果顯示本年關鍵群體均落於北方 (無人口居住);若僅考慮具有人口居住之方位,一、二號機造成關鍵群體最大器官 等價劑量分別為 6.42E-03 微西弗 (方位:西南方,器官:腎上腺)及 2.11E-02 微西弗 (方位:西南方,器官:腎上腺)。

表 18 111 年放射性廢氣排放造成廠外民眾集體劑量

排放類別	廢	氣
機 組	— 易	· 機
集體劑量	有效劑量	腎上腺等價劑量
人西弗	1.18E-04	1.18E-04
機組	二 易	荒 機
集體劑量	有效劑量	腎上腺等價劑量
人西弗	3.87E-04	3.87E-04

表 19 111 年放射性廢水排放造成關鍵群體劑量

機組	<u> </u>	焼 機	二 易	虎機
關鍵曝露途徑	有效劑量 (微西弗)	脾臟等價劑量 (微西弗)	有效劑量 (微西弗)	脾臟等價劑量 (微西弗)
魚類	8.08E-02	5.67E-01	4.85E-02	3.39E-01
無脊椎生物	9.71E-02	6.80E-01	5.83E-02	4.07E-01
海藻	1.39E-04	8.16E-04	9.17E-05	4.94E-04
海濱遊樂	8.99E-04	8.55E-04	8.26E-04	7.85E-04
游泳	0.00E+00	0.00E+00	0.00E+00	0.00E+00
合 計	1.79E-01	1.25E+00	1.08E-01	7.47E-01
年設計限值	30	100	30	100
與設計限值比	5.97E-03	1.25E-02	3.60E-03	7.47E-03

表 20 111 年放射性廢水排放造成廠外民眾集體劑量

排放類別	廢水			
機組	一號機			
集體劑量	有效劑量 脾臟等價劑量			
人西弗	5.62E-03 4.17E-02			
機組	二 易	虎 機		
集體劑量	有效劑量	脾臟等價劑量		
人西弗	3.39E-03 2.49E-02			

表 21 歷年放射性廢氣排放造成關鍵群體有效劑量

	72 1 1 1 1 1 1 1 1 1	C17/ 1/C = // 19/1 3/C = 1	72 77 72 77 72
年	有效劑量 (微西弗)	佔設計限制比	設計限值 (微西弗)
66	3.61E-03	0.00072%	500
67	1.50E+01	3.000%	500
68	4.16E+01	8.320%	500
69	2.14E+02	42.800%	500
70	7.49E+01	14.980%	500
71	2.12E+01	4.240%	500
72	7.65E+01	15.300%	500
73	4.26E+01	8.520%	500
74	6.40E+00	1.280%	500
75	6.88E+01	13.760%	500
76	1.74E+01	3.480%	500
77	9.41E+00	9.410%	100
78	8.33E-01	0.833%	100
79	5.60E-01	0.560%	100
80	5.60E-02	0.056%	100
81	4.48E-01	0.448%	100
82	6.60E-02	0.066%	100
83	6.00E-02	0.060%	100
84	7.10E-02	0.071%	100
85	4.30E-02	0.043%	100
86	9.50E-03	0.010%	100
87	2.94E-03	0.0003%	100
88	2.58E-04	0.0002%	100
89	1.59E-04	0.00002%	100
90	1.95E-05	0.00002%	100
91	2.24E-05	0.00003%	100
92	2.60E-05	0.00039%	100
93	3.86E-04	0.00000%	100
94	1.40E-04	0.00014%	100
95	1.20E-03	0.00120%	100
96	1.34E-03	0.00130%	100
97	1.37E-03	0.00137%	100
98	3.40E-03	0.00340%	100
99	1.89E-02	0.00197%	100
100	2.86E-03	0.00286%	100
101	1.12E-03	0.00112%	100
102	2.36E-03	0.00236%	100
103	2.48E-03	0.00248%	100

年	有效劑量 (微西弗)	估設計限制比	設計限值 (微西弗)
104	7.20E-04	0.00072%	100
105	9.58E-04	0.00096%	100
106	5.74E-04	0.00057%	100
107	0.00E+00	0.00000%	100
108	0.00E+00	0.00000%	100
109	0.00E+00	0.00000%	100
110	0.00E+00	0.00000%	100
111	0.00E+00	0.00000%	100

- 1. 77 年度以後法規限值係依據原能會77 年5月24日(77)會輻字2428號函之修正標準予以更新。
- 2. 本表之有效劑量值係依據廢氣實際排放量,按評估模式計算而得。
- 3. 107 年度起因無惰性氣體排放,故有效劑量為零。

表 22 歷年放射性廢水排放造成關鍵群體有效劑量

年 有效劑量 (微西弗)	. 22	正 从 7 1 1 1 1 1 7 1	19977人10月7人19月3年7月	应力及用主
67 7.01E+01 46.73% 150 68 5.14E+01 34.27% 150 69 4.04E+01 26.93% 150 70 5.52E+00 3.68% 150 71 1.29E+00 0.86% 150 72 6.00E-01 0.40% 150 73 2.66E-01 0.18% 150 74 5.54E-01 0.37% 150 75 5.06E-01 0.34% 150 76 6.03E-01 0.40% 150 77 2.10E+00 3.50% 60 78 2.62E+00 4.37% 60 80 3.41E-01 0.57% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% <	年		佔設計限制比	· · · · · · · · · · · · · · · · · · ·
68 5.14E+01 34.27% 150 69 4.04E+01 26.93% 150 70 5.52E+00 3.68% 150 71 1.29E+00 0.86% 150 72 6.00E-01 0.40% 150 73 2.66E-01 0.18% 150 74 5.54E-01 0.37% 150 75 5.06E-01 0.34% 150 76 6.03E-01 0.40% 150 77 2.10E+00 3.50% 60 78 2.62E+00 4.37% 60 80 3.41E-01 0.57% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.18% <td< td=""><td>66</td><td>8.30E-01</td><td>0.55%</td><td>150</td></td<>	66	8.30E-01	0.55%	150
69 4.04E+01 26.93% 150 70 5.52E+00 3.68% 150 71 1.29E+00 0.86% 150 72 6.00E-01 0.40% 150 73 2.66E-01 0.18% 150 74 5.54E-01 0.37% 150 75 5.06E-01 0.34% 150 76 6.03E-01 0.40% 150 77 2.10E+00 3.50% 60 78 2.62E+00 4.37% 60 8 2.62E+00 4.37% 60 80 3.41E-01 0.57% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 88 1.07E-01 0.18% 60	67	7.01E+01	46.73%	150
70 5.52E+00 3.68% 150 71 1.29E+00 0.86% 150 72 6.00E-01 0.40% 150 73 2.66E-01 0.18% 150 74 5.54E-01 0.37% 150 75 5.06E-01 0.34% 150 76 6.03E-01 0.40% 150 77 2.10E+00 3.50% 60 78 2.62E+00 4.37% 60 79 2.20E+00 3.67% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 89 1.90E-01 0.32% 60<	68	5.14E+01	34.27%	150
71 1.29E+00 0.86% 150 72 6.00E-01 0.40% 150 73 2.66E-01 0.18% 150 74 5.54E-01 0.37% 150 75 5.06E-01 0.34% 150 76 6.03E-01 0.40% 150 77 2.10E+00 3.50% 60 78 2.62E+00 4.37% 60 79 2.20E+00 3.67% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 </td <td>69</td> <td>4.04E+01</td> <td>26.93%</td> <td>150</td>	69	4.04E+01	26.93%	150
72 6.00E-01 0.40% 150 73 2.66E-01 0.18% 150 74 5.54E-01 0.37% 150 75 5.06E-01 0.34% 150 76 6.03E-01 0.40% 150 77 2.10E+00 3.50% 60 78 2.62E+00 4.37% 60 79 2.20E+00 3.67% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 <td>70</td> <td>5.52E+00</td> <td>3.68%</td> <td>150</td>	70	5.52E+00	3.68%	150
73 2.66E-01 0.18% 150 74 5.54E-01 0.37% 150 75 5.06E-01 0.34% 150 76 6.03E-01 0.40% 150 77 2.10E+00 3.50% 60 78 2.62E+00 4.37% 60 79 2.20E+00 3.67% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 <td>71</td> <td>1.29E+00</td> <td>0.86%</td> <td>150</td>	71	1.29E+00	0.86%	150
74 5.54E-01 0.37% 150 75 5.06E-01 0.34% 150 76 6.03E-01 0.40% 150 77 2.10E+00 3.50% 60 78 2.62E+00 4.37% 60 79 2.20E+00 3.67% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60	72	6.00E-01	0.40%	150
75 5.06E-01 0.34% 150 76 6.03E-01 0.40% 150 77 2.10E+00 3.50% 60 78 2.62E+00 4.37% 60 79 2.20E+00 3.67% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60	73	2.66E-01	0.18%	150
76 6.03E-01 0.40% 150 77 2.10E+00 3.50% 60 78 2.62E+00 4.37% 60 79 2.20E+00 3.67% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60	74	5.54E-01	0.37%	150
77 2.10E+00 3.50% 60 78 2.62E+00 4.37% 60 79 2.20E+00 3.67% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60	75	5.06E-01	0.34%	150
78 2.62E+00 4.37% 60 79 2.20E+00 3.67% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60	76	6.03E-01	0.40%	150
79 2.20E+00 3.67% 60 80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 97 5.87E-01 0.98% 60 99 1.43E-01 0.24% 60	77	2.10E+00	3.50%	60
80 3.41E-01 0.57% 60 81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 97 5.87E-01 0.98% 60 99 1.43E-01 0.24% 60 99 1.43E-01 0.24% 60	78	2.62E+00	4.37%	60
81 1.70E-01 0.28% 60 82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60	79	2.20E+00	3.67%	60
82 1.09E-01 0.18% 60 83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60	80	3.41E-01	0.57%	60
83 1.89E-01 0.32% 60 84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	81	1.70E-01	0.28%	60
84 1.44E-01 0.24% 60 85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	82	1.09E-01	0.18%	60
85 1.22E-01 0.20% 60 86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 102 6.87E-02 0.11% 60	83	1.89E-01	0.32%	60
86 1.13E-01 0.19% 60 87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	84	1.44E-01	0.24%	60
87 9.79E-02 0.16% 60 88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	85	1.22E-01	0.20%	60
88 1.07E-01 0.18% 60 89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	86	1.13E-01	0.19%	60
89 1.90E-01 0.32% 60 90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	87	9.79E-02	0.16%	60
90 1.32E-01 0.22% 60 91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	88	1.07E-01	0.18%	60
91 9.78E-02 0.16% 60 92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	89	1.90E-01	0.32%	60
92 3.56E-02 0.06% 60 93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	90	1.32E-01	0.22%	60
93 1.87E-02 0.03% 60 94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	91	9.78E-02	0.16%	60
94 1.19E-01 0.20% 60 95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	92	3.56E-02	0.06%	60
95 4.02E-02 0.07% 60 96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	93	1.87E-02	0.03%	60
96 5.55E-02 0.09% 60 97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	94	1.19E-01	0.20%	60
97 5.87E-01 0.98% 60 98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	95	4.02E-02	0.07%	60
98 2.05E-01 0.34% 60 99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	96	5.55E-02	0.09%	60
99 1.43E-01 0.24% 60 100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	97	5.87E-01	0.98%	60
100 6.67E-02 0.11% 60 101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	98	2.05E-01	0.34%	60
101 1.17E-01 0.19% 60 102 6.87E-02 0.11% 60	99	1.43E-01	0.24%	60
102 6.87E-02 0.11% 60	100	6.67E-02	0.11%	60
	101	1.17E-01	0.19%	60
103 3.45E-02 0.06% 60	102	6.87E-02	0.11%	60
	103	3.45E-02	0.06%	60

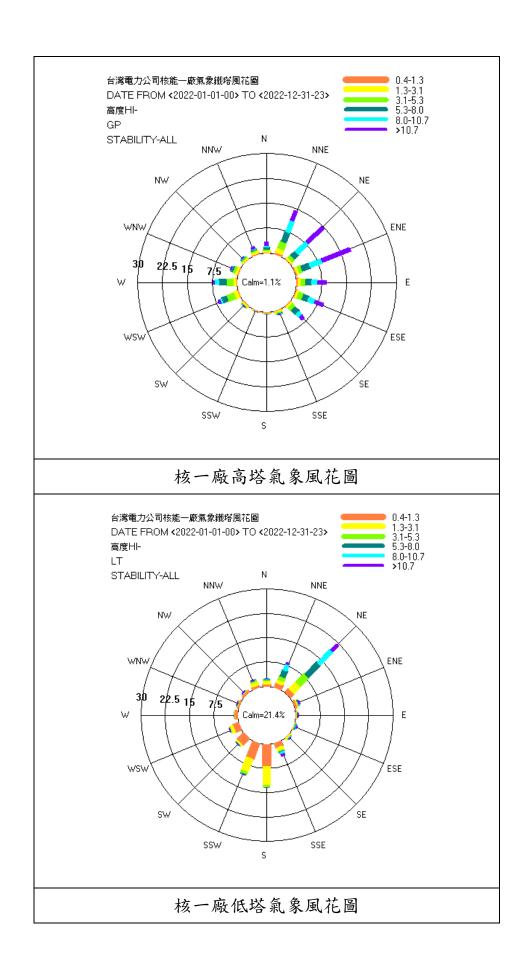
年	有效劑量 (微西弗)	估設計限制比	設計限值 (微西弗)
104	2.42E-01	0.40%	60
105	3.76E-02	0.06%	60
106	1.57E-02	0.03%	60
107	8.48E-03	0.01%	60
108	7.21E-03	0.01%	60
109	8.04E-03	0.01%	60
110	3.77E-02	0.06%	60
111	2.87E-01	0.48%	60

- 1. 77 年度以後法規限值係依據原能會 77 年 5 月 24 日(77)會輻字 2428 號函之 修正標準予以更新。
- 2. 本表之有效劑量值係依據廢水實際排放量,按評估模式計算而得。

附錄一 111年氣象資料摘要

111 年氣象資料摘要

依核能一廠氣象鐵塔收集之氣象風向及風速資料顯示, 本年(111年)大都受冬季東北季風、夏季西南季風、其他季節 大範圍天氣環流及地形造成之海陸風、山谷風等局部環流影響, 依風花圖顯示吹東北東風及西風等兩大風系,風速分佈以東北東風 較大。


全年降雨共 169 天,而累積降雨量 2514.5mm,台灣北部降雨主要為冬季及春季之鋒面過境及梅雨所貢獻,由降雨資料顯示,累積降雨量以秋季及春季較多。

單位 天

月份	一月	二月	三月	四月	五月	六月
降雨天數	16	19	13	10	23	12
月份	七月	八月	九月	十月	十一月	十二月
降雨天數	6	5	10	19	15	21

單位 mm

月份	一月	二月	三月	四月	五月	六月
降雨量	82.5	316.5	190.5	57.5	485.5	217.5
月份	七月	八月	九月	十月	十一月	十二月
降雨量	42.5	22.5	190.0	373.5	265.5	270.5

- 52 - 第一核能發電廠 111 年放射性物質排放報告 原能會 112 年 8 月 22 日會輻字第 1120012113 號函備查

附錄二 民眾劑量評估使用量因子

表 1 核一廠廢氣排放途徑民眾劑量評估使用量因子

	關鍵群體使用量因子(97.5th 百分位數)						民眾平均使用量因子 (平均值)						
年龄群	>17 歲	12-17 歲	7-12 歲	2-7 歲	1-2 歲	≦1 歳	>17 歲	12-17 歲	7-12 歲	2-7 歲	1-2 歲	≦1 歲	
呼 吸 量 (m³/y)	8000	8000	3700	3700	1400	1400	8000	8000	3700	3700	1400	1400	
農 作 物 (公斤/ 年)	221.36	168.68	136.40	124.92	85.38	52.00	85.99	73.07	61.84	48.95	38.60	13.82	
葉 菜 (公斤/年)	111.58	84.62	67.8	53.68	40.74	26.33	47.19	40.52	34.04	23.86	20.41	6.24	
奶 類 (公升/年)	266.31	181.27	285.9	350.41	352.16	444.95	40.55	20.8	45.43	103.4	140.8	160.18	
肉 類 (公斤/年)	70.76	63.93	56.35	55.92	34.8	25.96	31.07	33.33	27.69	23.85	15.71	4.6	

- 1.原始數據為民國 106 年委託世新大學完成之「台灣南北部地區居民生活環境與飲食習慣調查」,適用期間為民國 108 年至民國 112 年。
- 2.依上述調查,葉菜、根菜、水果、稻米、雜糧、茶葉、肉類及奶類之當地產量未達自給自足,故依環境輻射監測規範中附件四「體外及體內劑量評估方法」,評估此等食物攝取之約定有效劑量時,另須考量市場稀釋修正因子進行修正。核一廠 10 公里範圍內無畜牧業發展,奶類市場稀釋修正因子取為 0.0,其餘由當地農牧產品的產銷情形,葉菜、根菜、稻米、水果、雜糧、茶葉及肉類之市場稀釋因子分別取為 0.544、0.790、0.327、0.331、0.922、0.486 及 0.014。
- 3.農作物係採 RG 1.109, table E-4、table E-5 建議為 22%水果攝取量、54%蔬菜(包括葉菜、根菜及茶葉)及 24%穀類(包括稻米與雜糧)之加總。4.本表空氣呼吸量引用自美國 R.G. 1.109。

附表 2 核一廠廢水排放途徑民眾劑量評估使用量因子

	關鍵群體使用量因子(97.5th 百分位數)						民眾平均使用量因子 (平均值)						
年龄群	>17 歲	12-17 歲	7-12 歲	2-7 歲	1-2 歲	≦1 歲	>17 歲	12-17 歲	7-12 歲	2-7 歲	1-2 歲	≦1 歳	
魚 類 (公斤/年)	76	63.88	65.03	61.92	37.34	11.64	24.89	23.53	21.13	17.35	10.08	1.96	
無脊椎類 (公斤/年)	37.83	33.75	30.78	30.5	14.45	3.79	13.08	14.36	11.47	10.03	5.13	0.6	
海 菜 (公斤/年)	12.36	11.53	11.68	8.65	4.44	1.46	4.01	3.89	3.7	2.77	1.58	0.26	
沙灘停留 (小時/年)	1,536	156	156	156	0	0	1536	32.95	31.39	30	0	0	
游 泳 (小時/年)	208	156	156	0	0	0	31.81	29.64	23.11	0	0	0	
划 船 (小時/年)	0	0	0	0	0	0	0	0	0	0	0	0	

- 1.原始數據為民國 106 年委託世新大學完成之「台灣南北部地區居民生活環境與飲食習慣調查」,適用期間為民國 108 年至民國 112 年。
- 2.依上述調查,魚類、無脊椎類及海菜之當地產量未達自給自足,故依環境輻射監測規範中附件四「體外及體內劑量評估方法」,評估此等食物攝取之約定有效劑量時,另須考量市場稀釋因子進行修正,魚類、無脊椎及海菜之市場稀釋修正因子分別取為 0.561、0.205 及 0.023。
- 3.沙灘停留:關鍵群體使用量因子,>17歲年齡層取沙灘從業人員,其他年齡層則取居民沙灘停留時間分佈之97.5th百分位數;民眾平均使用量因子,>17歲年齡層取沙灘從業人員,其他年齡層取居民沙灘停留時間之平均值。
- 4.游泳:關鍵群體使用量因子,皆取居民游泳時間分佈之 97.5th 百分位數;民眾平均使用量因子,取居民游泳時間之平均值。
- 5.划船:於本次調查核一廠八公里範圍內未發現有居民或遊客從事划船活動,亦未發現划船相關業者。